ADVANCED FUNCTIONAL MATERIALS

Postfach 10 11 61 69451 Weinheim Germany *Courier services:* Boschstraße 12 69469 Weinheim Germany Tel.: (+49) 6201 606 531 Fax: (+49) 6201 606 500 E-mail: <u>afm@wiley.com</u>

Dear Author,

Please correct your galley proofs carefully and return them no more than four days after the page proofs have been received.

Please limit corrections to errors already in the text; cost incurred for any further changes or additions will be charged to the author, unless such changes have been agreed upon by the editor.

The editors reserve the right to publish your article without your corrections if the proofs do not arrive in time.

Note that the author is liable for damages arising from incorrect statements, including misprints.

Please note any queries that require your attention. These are indicated with a Q in the PDF and a question at the end of the document.

Reprints may be ordered by filling out the accompanying form.

Return the reprint order form by fax or by e-mail with the corrected proofs, to Wiley-VCH : <u>afm@wiley.com</u> To avoid commonly occurring errors, please ensure that the following important items are correct in your proofs (please note that once your article is published online, no further corrections can be made):

- Names of all authors present and spelled correctly
- **Titles** of authors correct (Prof. or Dr. only: please note, Prof. Dr. is not used in the journals)
- Addresses and postcodes correct
- E-mail address of corresponding author correct (current email address)
- Funding bodies included and grant numbers accurate
- Title of article OK
- All figures included
- Equations correct (symbols and sub/superscripts)

Corrections should be made directly in the PDF file using the PDF annotation tools. If you have questions about this, please contact the editorial office. The corrected PDF and any accompanying files should be uploaded to the journal's Editorial Manager site.

Author Query Form

WILEY

Journal ADFM

Article adfm202004307

Dear Author,

During the copyediting of your manuscript the following queries arose.

Please refer to the query reference callout numbers in the page proofs and respond to each by marking the necessary comments using the PDF annotation tools.

Please remember illegible or unclear comments and corrections may delay publication.

Many thanks for your assistance.

Query No.	Description	Remarks
Q-00	Open access publication of this work is possible via Wiley OnlineOpen. Information about this is available at: https://authorservices.wiley.com/author-resources/Journal-Authors/licensing-open-access/open-access/onlineopen.html.	
	The cost of publishing your manuscript OnlineOpen may be covered by one of Wiley's national agreements. To find out more, visit https://authorservices.wiley.com/author-resources/Journal-Authors/open-access/affiliation-policies-payments/index.html.	
	Note that eligibility for fee coverage is determined by the affiliation of the primary corresponding author designated at submission. Please log in to your Wiley Author Services account at https://authorservices.wiley.com/ and confirm your affiliation to see if you are eligible.	
	Instructions for placing an OnlineOpen order can be found at: https://authorservices.wiley.com/author-resources/ Journal-Authors/open-access/how-to-order-onlineopen.html.	
	To publish your article open access, please complete the order process before completing your proof corrections.	
Q1	Please confirm that forenames/given names (blue) and surnames/family names (vermilion) have been identified correctly.	
Q2	Please provide the highest academic title (either Dr. or Prof.) for all authors, where applicable.	
Q3	Please check all equations have been correctly typeset.	
Q4	Please define 'DMEM', 'NEAA', 'HEPES' at their first occurrence in the text.	
Q5	Please provide volume and page number in ref. [19] if now available.	
Q6	Refs. [24c] and [38] were identical in the list. Therefore, we have deleted ref. [24c] and have changed the citations accordingly in the text.	
Q7	Please check part label "I" in Figure 2.	

Please confirm that Funding Information has been identified correctly.

Please confirm that the funding sponsor list below was correctly extracted from your article: that it includes all funders and that the text has been matched to the correct FundRef Registry organization names. If a name was not found in the FundRef registry, it may not be the canonical name form, it may be a program name rather than an organization name, or it may be an organization not yet included in FundRef Registry. If you know of another name form or a parent organization name for a "not found" item on this list below, please share that information.

FundRef Name	FundRef Organization Name
National Institutes of Health	National Institutes of Health
National Institute of Arthritis and Musculoskeletal and Skin Diseases	National Institute of Arthritis and Musculoskeletal and Skin Diseases
National Research Service Award	
UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research Innovation Award	
Presidential Early Career Award for Scientists and Engineers	
Kwanjeong Graduate Scholarship	
UCLA MSTP	
California NanoSystems Institute	
Electron Imaging Center for NanoMachines	
California NanoSystems Institute	
Advanced Light Microscopy/Spectroscopy Shared Resource Facility	

FULL PAPERS

Myocardial Infarction

J. Fang, J. Koh, Q. Fang, H. Qiu,

H. Miwa, X. Zhong, R. Sievers,

D.-W. Gao, R. Lee,* D. Di Carlo,*

Injectable Drug-Releasing Microporous

Annealed Particle Scaffolds for Treating

Microfluidic generation of drugMAP MI therapy MP-linke PEG-VS/NPs Oil/Surfactant M. M. Archang, M. M. Hasani-Sadrabadi, Oil/Surfactar

A novel multimodal drug-releasing granu-lar microstructured hydrogel (drugMAP) system, created by the microfluidic device, could decouple mechanical sup-port and rapid tissue ingrowth, and also endow various pharmacological func-tions. The drugMAP loaded with drugs of forskolin and Repsox could significantly enhance left ventricular functions after local injection into infarcted hearts.

Injectable Drug-Releasing Microporous Annealed Particle Scaffolds for Treating Myocardial Infarction

Jun Fang, Jaekyung Koh, Qizhi Fang, Huiliang Qiu, Maani M. Archang, Mohammad Mahdi Hasani-Sadrabadi, Hiromi Miwa, Xintong Zhong, Richard Sievers, Dong-Wei Gao, Randall Lee,* Dino Di Carlo,* and Song Li*

Intramyocardial injection of hydrogels offers great potential for treating myocardial infarction (MI) in a minimally invasive manner. However, traditional bulk hydrogels generally lack microporous structures to support rapid tissue ingrowth and biochemical signals to prevent fibrotic remodeling toward heart failure. To address such challenges, a novel drug-releasing microporous annealed particle (drugMAP) system is developed by encapsulating hydrophobic drug-loaded nanoparticles into microgel building blocks via microfluidic manufacturing. By modulating nanoparticle hydrophilicity and pregel solution viscosity, drugMAP building blocks are generated with consistent and homogeneous encapsulation of nanoparticles. In addition, the complementary effects of forskolin (F) and Repsox (R) on the functional modulations of cardiomyocytes, fibroblasts, and endothelial cells in vitro are demonstrated. After that, both hydrophobic drugs (F and R) are loaded into drugMAP to generate FR/drugMAP for MI therapy in a rat model. The intramyocardial injection of MAP gel improves left ventricular functions, which are further enhanced by FR/drugMAP treatment with increased angiogenesis and reduced fibrosis and inflammatory response. This drugMAP platform represents a new generation of microgel particles for MI therapy and will have broad applications in regenerative medicine and disease therapy.

1. Introduction

Ischemic heart disease (IHD) is a leading cause of global mortality, accounting for over nine million deaths per year, 18 according to the World Health Organi- 19 zation (WHO).^[1] Acute MI is the most 20 common manifestation of IHD, usu- 21 ally caused by the complete occlusion 22 of a coronary artery with atherosclerotic 23 plaque rupture and thrombosis.^[2] Fol-lowing MI, the damaged myocardium eventually undergoes a remodeling pro-cess with cardiomyocyte depletion, tissue 27 fibrosis, cardiac dilatation, and dysfunc- 28 tion, culminating in heart failure.^[3] Cur- 29 rently, several therapeutic strategies have 30 been exploited to repair and regenerate 31 the damaged cardiac tissues caused by MI, including pharmaceutic approaches,^[4] injectable hydrogels,^[5] cardiac patches,^[6] cell transplantation,^[7] and cell repro-gramming.^[8] Among them, injectable hydrogels have shown great potential to

/1		
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	Dr. J. Fang, Dr. J. Koh, M. M. Archang, Dr. M. M. Hasani-Sadrabadi, H. Miwa, X. Zhong, Prof. D. Di Carlo, Prof. S. Li Department of Bioengineering University of California Los Angeles, CA 90095, USA E-mail: dicarlo@ucla.edu; songli@ucla.edu Dr. J. Fang, M. M. Archang, Prof. S. Li Department of Medicine University of California Los Angeles, CA 90095, USA Dr. Q. Fang, Dr. H. Qiu, Dr. R. Sievers, Dr. DW. Gao, Prof. R. Lee Department of Medicine Cardiovascular Research Institute and Institute for Regeneration Medicine University of California San Francisco, CA 94143, USA E-mail: Randall.Lee@ucsf.edu ID The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/adfm.202004307. DOI: 10.1002/adfm.202004307	Dr. M. M. Hasani-Sadrabadi, Prof. D. Di Carlo, Prof. S. Li California NanoSystems Institute (CNSI) University of California Los Angeles, CA 90095, USA Prof. R. Lee UC Berkeley-UCSF Graduate Program in Bioengineering University of California, San Francisco San Francisco, CA 94158, USA Prof. D. Di Carlo Department of Mechanical and Aerospace Engineering University of California Los Angeles, CA 90095, USA Prof. D. Di Carlo Jonsson Comprehensive Cancer Centre University of California Los Angeles, CA 90024, USA

Q2

therapeutic outcomes.^[5a]

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44 45

46

47

48 49

50

51

52

53

54

55

56 57

58

59

anti-fibrosis.^[18,19]

www.advancedsciencenews.com

manner.^[5,9] Nevertheless, traditional hydrogels usually have a

trade-off between mechanical strength to support cell attach-

ment and porous structure to enable rapid tissue ingrowth

before hydrogel degradation. Thus, biomaterials with indepen-

dently tunable biophysical properties are needed to improve

porous hydrogels can significantly impact in vivo cell behavior

and tissue regeneration effects.^[10] Currently, a variety of man-

ufacturing techniques have been developed to fabricate struc-

tured porous hydrogel scaffolds, including solvent/porogen

leaching,^[11] gas foaming,^[12] freeze-drying,^[13] and 3D printing,^[14]

but these methods are challenging to be delivered via mini-

mally invasive techniques. To decouple porous structure and

mechanical support, we have recently developed an injectable

microporous annealed particle (MAP) scaffold by crosslinking

uniform microgel (µGel) building blocks produced in a micro-

fluidic device.^[15] By combining injectability, microporosity

and mechanical strength, the porous MAP scaffolds have

demonstrated rapid cellular infiltration without bulk material

degradation to facilitate wound and stroke healing in vivo.[15a,16]

However, the therapeutic efficacy of MAP gel for treating MI

and its capabilities as a drug delivery platform to promote func-

to slow down or reverse detrimental cardiac remodeling in MI

patients,^[17] with specific effects such as proangiogenesis,^[18]

death,^[4b] antiarrhythmic,^[21] and anti-thrombosis.^[22] The cyclic

adenosine monophosphate (cAMP) is an essential second mes-

senger and mediates many critical intracellular signaling under

physiological and pathophysiological conditions.^[23] Activation

and increased generation of cAMP can markedly increase car-

diac LV function and survival, and attenuate cardiac fibrosis

and its sequelae after acute MI.^[24] Additionally, transforming

growth factor- β (TGF- β) signaling plays a pleiotropic role in

driving disease progression.^[25] TGF- β expression is upregu-

lated in acute MI and cardiac hypertrophy, which leads to

fibrosis and diastolic dysfunction with induced myodifferentia-

tion, extracellular matrix (ECM) synthesis, and cardiomyocyte

hypertrophy.^[26] Here we explored the approach to promote car-

diac regeneration by activating cAMP pathway while inhibiting

TGF- β signaling. Forsklin (F) is a cAMP agonist, and RepSox

(R) is a selective TGF- β inhibitor. Both small molecules have

shown the beneficial effects to rescue cardiac dysfunction and

ameliorate post-MI remodeling.^[27,38] However, it is unclear

whether there is a synergistic effect by modulating both sign-

aling pathways for heart repair. Furthermore, the majority of

drugs are administrated to patients by simple systemic delivery,

which generally leads to adverse off-target effects, drug toxicity,

and low treatment efficacy.^[28] In addition, a holistic approach is

still required to regenerate damaged human heart by targeting

multiple tissue pathologies, including remuscularization, elec-

tromechanical stability, angiogenesis, resolution of fibrosis,

and immunological balance.^[29] Therefore, biomaterial-based

scaffolds with localized multidrug delivery may be necessary to

anti-inflammatory,^[20]

Pharmacological treatments are commonly used in clinic

anti-cardiomvocvte

tional regeneration remain to be investigated.

Mechanical properties, porosity and microarchitecture of

treat MI by providing mechanical support and tissue integrapromote cardiac regeneration by providing pleiotropic pharmation to increase myocardial thickness and prevent ventricular ceutic effects. remodeling through a minimally invasive and cost-effective

In this study, we developed a novel injectable, multimodal 3 drugMAP hydrogel for MI therapy. The generation of a porous 4 drugMAP scaffold is shown schematically in Figure 1. Hydro-5 phobic drugs were loaded into nanoparticles (NPs), which 6 were further encapsulated into matrix metalloprotease (MMP) 7 sensitive polyethylene glycol (PEG)-based μ Gel beads to gen-8 9 erate drugMAP building blocks, i.e., drug/NPs-µGel beads, using a flow-focusing microfluidic device. When the drugMAP 10 building blocks were injected into the infarcted heart, endog-11 enous factor XIIIa (FXIIIa) could activate peptide K (Pep-K) and 12 peptide Q (Pep-Q) in μ Gel to induce surface binding between 13 μ Gel beads and form contiguous porous drugMAP scaffolds in 14 situ. By coloading hydrophobic drugs of F and R, the injectable 15 drugMAP could endow pleiotropic benefits for heart repair by 16 providing mechanical support, promoting cell migration, and 17 neovascularization, while suppressing fibrosis and immune 18 responses. 19

2. Results and Discussion

2.1. Development of drugMAP Building Blocks

25 The microfluidic device for drugMAP gel generation was 26 designed and fabricated with soft lithography (Figure 2A,B). To 27 achieve sustained drug release from drugMAP gel, biodegrad-28 able poly(lactic-co-glycolic acid) (PLGA) based polymers were 29 used to make drug/NPs by an emulsification solvent evapora-30 tion technique, and mixed with the pregel solutions prior to 31 μ Gels formation. PLGA is a biodegradable polymer being used 32 in many FDA-approved products, and PLGA-based particles 33 have been widely employed for drug delivery because of their 34 biocompatibility and controllable biodegradation.^[30] However, 35 the hydrophobic PLGA NPs aggregated and precipitated quickly 36 in the aqueous pregel solution, leading to failure in the produc-37 38 tion of NPs- μ Gels in a microfluidic device, because of blockage or leakage of the microfluidic channels, and unstable processing 39 which caused the generation of heterogenous low-quality μ Gels 40 (Figure S1, Supporting Information). Thus, we employed two 41 strategies to suspend the PLGA NPs and delay particle aggre-42 gation in the pregel solution through improving NP surface 43 hydrophilicity and increasing the viscosity of the pregel solution 44 (Figure S1, Supporting Information). The mean hydrodynamic 45 diameter of NPs was ≈400 nm with a polydispersity index of 46 0.23 as measured by dynamic light scattering (DLS). We first 47 adjusted the NP surface hydrophilicity in the aqueous pregel 48 solutions by using different PLGA-PEG copolymers, including 49 PLGA 35k, PLGA55k-b-PEG5k, and PLGA25k-b-PEG5k. We 50 found that particle suspension was enhanced with the increase 51 of PEG length, and PLGA55k-b-PEG5k NPs resulted in a stable 52 preparation of NPs- μ Gel. However, a further increase of hydro-53 philicity might lead to a lower encapsulation capacity of hydro-54 phobic drugs and cause a burst drug release.^[31] Thus, another 55 strategy was implemented in addition to the adjustment of 56 the particle hydrophilicity. Here, through the addition of hya-57 luronic acid (HA) to the pregel solution, the solution viscosity 58 59 was increased, resulting in a reduction of NPs aggregation.

1

2

20

21

22

23

www.advancedsciencenews.com

drugMAP building blocks by encapsulating drug/NPs into μ Gel beads to generate drug/NPs- μ Gel beads in a microfluidic device. The hydrogels are formed by crosslinking pregel solutions via thiol-ene reactions to encapsulate NPs in the gel mesh. B) Injection of cardiac drugMAP scaffolds for MI therapy. Via delivery of specific drugs, the cardiac drugMAP scaffolds endow pleiotropic benefits for heart repair.

After optimization, we found that the NPs made by PLGA35k/ PLGA55k-PEG5k (1:1 weight ratio) and the addition of 0.25% v/v HA in pregel solution achieved a stable preparation of NPs-µGel beads with uniform size, controlled NPs loading, and uniform NPs distribution (Figure 2C-E). To monitor and visualize the mixing process of the two aqueous phases and the particle distribution in the μ Gels beads, NPs were labeled with coumarin-6 (green) and the pregel solution was conjugated with AF546-maleimide (red) (Figure 2F). The fluorescent images showed that NPs were uniformly encapsulated in the μ Gel beads (Figure 2I; Videos S1 and S2, Supporting Information). Thus, PLGA35k/PLGA55k-PEG5k NPs were used as the drug loading material for all the subsequent studies.

2.2. Characterization of drugMAP Building Blocks and Scaffolds

A major advantage of the microfluidic-emulsion technique is the production of highly monodisperse hydrogel microparticles of well-defined size. We were able to produce NPs- μ Gel beads with diameters ranging from 45 to 120 μ m by tuning the flow rate of aqueous solutions (Figure 3A). Some minor differences in μ Gel bead formation were observed for beads containing NPs. In par-ticular, at an aqueous flow rate of 8 μ L min⁻¹, NPs- μ Gel beads in the oil phase were larger than μ Gel beads, potentially because 46 the addition of HA and NPs increased the viscosity of aqueous solution and affected the droplet breakup. However, NPs encapsulation slightly decreased the gel swelling ratio in buffer solution, resulting in the final diameter of NPs- μ Gel beads still being similar to μ Gel beads (\approx 100 μ m) (Figure 3B).

FUNCTIONAL

www.afm-journal.de

To adjust the drug delivery capacity of drugMAP, we pre-pared gel droplets loaded with different amounts of NPs from 0% to 100% (weight of NPs/weight of dry pregel components) (Figure 3C). After gelling and purification, the particle loading efficiency was higher than 90% for all tested NPs- μ Gel beads (Figure 3D), and the final NP concentration in the gels was highly correlated with the initial loading amount (Figure 3E). The NPs that were not encapsulated in the μ Gels might be lost 59

FUNCTIONAL MATERIALS

37 38 arrows denote aqueous inlets. The blue arrow denotes droplet generation region, and the red arrow denotes droplet collection region. B) Photograph of 38 the microfluidic device of µGel generator, channels are highlighted with colored dye solutions. C) PEG-VS pregel solution with dispersed nanoparticles 39 39 (NPs) flows stably through the inlet filters. Insert image in the lower-left corner is a representative SEM image of PLGA-based NPs. D) Homogeneous 40 40 droplets containing pregel solution and crosslinker formed at a flow focusing junction of the microfluidic channel. E) NPs-µGel beads with a uniform 41 41 NP distribution collected at the outlet region. F) Fluorescence images of droplets generated with fluorescent-labeled aqueous solutions, one aqueous 42 42 channel with coumarin-6 (green) labeled NPs with 4-arm PEG-VS pregel solution and another aqueous channel with AF 546-maleimide (red) with 43 43 MMP-sensitive crosslinker solution. G) Representative fluorescent images of NPs-µGel beads made under optimized processing conditions, with NPs 44 distributed uniformly in μ Gel. 44 45

Q7

in the device during gel fabrication or released during gel puri-47 48 fication. Similar to the MAP scaffolds, the drugMAP scaffolds 49 generated from 100 µm NPs-µGel beads maintained an interconnected porous structure after annealing (Figure 3F) with a 50 51 median pore diameter $\approx 20 \ \mu m$ and $\approx 15\%$ average void fraction 52 (Figure 3G). With pores of these dimensions, cells can easily 53 infiltrate and traverse the microporous scaffold even before 54 MAPgel degradation. In addition, the pore diameters could be 55 adjusted by tuning the building-block sizes.^[15a] The loading of NPs did not affect the ability of NPs- μ Gel beads to anneal to 56 57 form contiguous microporous drugMAP scaffolds. In vitro, the 58 building blocks were annealed via activated FXIIIa, in which a 59 noncanonical amide covalent bond formed between the ε -amine

of lysine in peptide-K and the *p*-carboxamide of glutamine in 47 peptide-Q on the microbeads.^[15a,32] When the beads were 48 injected in vivo, the endogenous thrombin and FXIIIa could 49 induce the crosslinking of μ Gels to form MAP scaffold in the 50 infarcted heart.^[33] Mechanical properties are critical biophysical 51 cues in MI therapy.^[34] Therefore, the influence of nanoparticle 52 loading on the mechanical stiffness of MAP gel was inves-53 tigated. The results demonstrated that the addition of NPs in 54 gels had a negligible effect on the hydrogel stiffness, yielding a 55 storage modulus of ≈600 Pa (Figure 3H). The stiffness is in the 56 same order as the stiffness of other soft hydrogels, which have 57 shown improved therapeutic outcomes in post-MI therapy.^[35] 58 In particular, the porous MAP gel could provide a microporous 59

SCIENCE NEWS

Figure 3. Characterization of drugMAP building blocks and annealed scaffolds. A) Generation of NPs- μ Gel beads with highly defined sizes by altering the aqueous flow rate. B) NPs- μ Gel beads, made with an aqueous flow rate of 8 μ L min⁻¹, and swollen in buffer after aqueous extraction from the oil phase. Q_v represents the volumetric swelling ratio of a bead. C) Representative images of NPs- μ Gel beads loaded with increasing amounts of NPs. The numbers in brackets represent the weight percentages of the NPs to dry pregel components. D) Nanoparticle loading efficiency in different NP- μ Gel beads as a function of wt%. E) Nanoparticle loading concentration in NPs- μ Gel beads as a function of initial concentration. F) Microporous drugMAP scaffolds generated by annealing NPs- μ Gel beads using FXIIIa. G) Pore size and void fraction of MAP and drugMAP scaffolds. H) Storage moduli of bulk hydrogels mixed with different amounts of NPs. Data are shown as mean \pm SD. *p < 0.05, NS represents no significant difference.

structure for fast cell infiltration and mechanical support
immediately after injection, and the mechanical properties of
drugMAP could be easily adjusted to achieve stiffness matching
between the scaffold and native tissue via modulating the stiffness of individual µGel beads, annealing chemistry, crosslinking
degree, and bead-packing density.

The degradation of biomaterials enables in situ tissue regene-ration with cell infiltration and ECM formation. The MAP gel mesh was crosslinked with MMP-sensitive peptide, making it degradable by MMP enzyme.^[36] MMPs are highly relevant to cardiac remodeling after MI as the MMP9 level is elevated in plasma and left ventricle after MI in animals and humans.^[37] To check the MAP gel degradation in enzyme solution and address whether MAP gel degradation affected the drug release profile, we loaded Coumarin-6 into drugMAP beads as a hydrophobic fluorescent model drug and characterized the degradation of pelleted NPs-µGel beads in the presence of MMP enzyme (col-lagenase II) in vitro (Figure S2A, Supporting Information). We found that the drugMAP beads degraded faster with the increase of collagenase concentration. However, the release of cou-marin-6 in NPs was not affected by changing the concentrations of collagenase. Fluorescence imaging of NPs- μ Gel beads showed a direct correlation between the collagenase concentration and the extent of degradation (represented by diminishing AF546 45 signal intensity) as well as particle deformability (evidenced 46 by elongation and swelling of the particles) (Figure S2B, Supporting Information). Furthermore, we found that NPs also increased in size during degradation and remained trapped inside μ Gels. There might be two possible reasons for the par-ticle trapping in drugMAP mesh during degradation. First, the ester bonds of polyester could be hydrolyzed to form hydrophilic carboxyl and hydroxyl groups, so the hydrophilicity of the parti-cles would increase gradually to promote water absorption, thus forming larger swollen particles or clusters. Second, the carboxyl groups of polyester fragments could interact with the amine groups of gel components electrostatically. Overall, these in vitro data suggested that the drug release profile from the drugMAP remained relatively independent of gel degradation.

FUNCTIONAL

www.afm-journal.de

ADVANCED SCIENCE NEWS

1

2

www.advancedsciencenews.com

2.3. In Vitro Evaluation of Drugs and drugMAP

3 Previous studies have reported that F and R have specific effects on preventing cardiac dysfunction, respectively.^[27,38] However. 4 their effects on various cell types in cardiac tissues have not 5 been systematically evaluated, and it is not clear whether the 6 7 combination of F and R has additive or synergistic effects. In 8 the initial drug evaluation, we found that both F and R or FR 9 combination could maintain cardiomyocyte viability at 80% 10 after 5 days in vitro culture, which was significantly higher than 11 25% for control cells (Figure S3, Supporting Information). In addition, both F and R significantly enhanced the prolifera-12 tion of neonatal cardiomyocytes, yielding three and six times 13 as many cells as the control, respectively (Figure S4, Supporting 14 15 Information). For cardiac fibroblasts (Figure S5A, Supporting Information), F showed dose effects to enhance fibroblast pro-16 17 liferation, in contrast, R showed the opposite inhibitory effects. 18 Nevertheless, the inhibition of fibroblast proliferation can be maintained when both drugs used together. We also found that 19 20 each F or R, or their combination could prevent myodifferen-21 tiation of cardiac fibroblasts (Figure S5B, Supporting Information). Furthermore, for endothelial cell (EC) proliferation and 22 23 tubule network formation (Figure S6, Supporting Information), 24 both F and R showed dose-dependent effects to enhance EC 25 proliferation, and their optimal concentration was the same 26 (20 µM). Notably, EC proliferation was significantly enhanced with the combination of the two drugs. EC network formation 27 was increased with F or FR treatment, while not with R alone. 28 29 Altogether, the collected effects of both drugs on cardiac cells were summarized in Figure 4A. Since F and R had additive and 30 31 complementary benefits in promoting cardiomyocyte survival, inhibiting fibroblast myodifferentiation and enhancing EC 32 proliferation and tubule formation, both hydrophobic agents 33 34 were loaded into PLGA-based NPs (FR/NPs), which were fur-35 ther encapsulated into μ Gel beads to generate FR/drugMAP 36 building blocks.

The drug release profiles from FR/drugMAP demonstrated 37 38 that both hydrophobic chemicals were gradually released throughout 2 weeks (Figure 4B). The in vitro biological evalu-39 40 ations were further performed for the drug-releasing platforms 41 (Figure 4C-F). Similar to FR added directly to the medium, FR/ NPs and FR/drugMAP yielded the combined beneficial effects 42 43 and significantly enhanced cardiomyocyte survival compared to control (FR/NPs: 65%, FR/drugMAP: 75% versus blank: 25% 44 45 at day 5) (Figure 4C,D). In addition, both alpha-smooth muscle actin (α -SMA) and F-actin were strongly expressed in the blank 46 control (Figure 4E,F), and there were no differences between 47 the blank control and the supernatants from the unloaded NPs 48 49 or blank μ Gels (Figure S5, Supporting Information). However, 50 same as adding drugs (F and R) in the medium, both FR/NPs 51 and FR/drugMAP diminished fibroblast myodifferentiation 52 with significantly lower α -SMA expression. In parallel, there was a decrease of F-actin in response to released F and R, sug-53 54 gesting that the formation of actin stress fibers was blunted 55 in parallel with the decrease in α -SMA expression, consistent with a previous finding.^[38] Moreover, both FR/NPs and FR/ 56 57 drugMAP obviously enhanced EC vascular network formation 58 (Figure 4G), and exhibited significant higher number of junctions, tubes, and meshes versus the blank control (Figure 4H). 59

10

11

12

13

Taken together, these in vitro results demonstrated the benefi-1 cial effects of FR/drugMAP on regulating cardiac remodeling 2 cells, including enhancing cardiomyocyte survival, inhibiting 3 fibroblast myodifferentiation and promoting EC proliferation 4 and tubule formation. Beyond the controlled drug release, we 5 found that the cellular uptake of NPs embedded in μ Gel beads 6 were significantly reduced, compared to free NPs (Figure S7, 7 Supporting Information), which could decrease the cytotoxicity 8 and inflammatory response.[39] 9

2.4. Cardiac Function Improvement with drugMAP Injection

To investigate the potency for cardiac repair with drugMAP, rat 14 MI models were created by ischemia-reperfusion injury through 15 the ligation of the left anterior descending artery. As pre-16 vious studies suggested that the best therapeutic outcomes of 17 hydrogel-based approaches were found 2–3 days after MI,^[40] we 18 performed injections 2 days after infarction of four randomized 19 groups with the treatments of PBS (n = 9), FR/NPs (n = 6), 20 MAP gel (n = 9), and FR/drugMAP gel (n = 9), respectively. 21

Solutions were successfully injected into the infarcted zone 22 by ultrasound-guided transthoracic injection (total 100 µL with 23 two sites of 50 µL injections). The commonly used natural and 24 synthetic hydrogels usually undergo a solution-to-gel transi-25 tion upon stimulus exposure, while it is relatively difficult to 26 control and balance the ideal solution-to-gel transition time.^[41] 27 28 Inappropriate gelation speed may lead to many adverse effects. Slow gelation (from minutes to hours) could increase tissue 29 necrosis or the loss of materials and therapeutic molecules. On 30 the other hand, rapid gelation (from seconds to minutes) leads 31 to quick needle blockage, handling inconveniences and limited 32 tissue integration. Unlike commonly applied bulk hydrogels, 33 the MAP gel building blocks are flowable and can be easily 34 injected into highly motile cardiac tissue and stay at the injec-35 tion site without gel dislodgment, which might avoid the han-36 dling issues and risks of rapid or slow gelation. 37

38 The MI therapeutic outcomes of all groups were evaluated at 5 weeks post-treatment by histology and echocardiography 39 analysis. Masson's trichrome staining showed the gross heart 40 morphology and revealed less MI region, fibrosis, LV dila-41 tion, and wall thinning in hearts treated with FR/NPs- or 42 MAP gel-only groups compared with PBS group, with further 43 improvement for hearts treated with integrated FR/drugMAP 44 (Figure 5A; Figure S8, Supporting Information), resulting in 45 the smallest infarct size (FR/drugMAP: $15.4 \pm 3.9\%$ vs PBS: 46 47 35 ± 6.8%; FR/NPs: 23.1 ± 5.1%; MAP: 24.2 ± 4.7%; Figure 5B) and the thickest minimum LV wall (FR/drugMAP: 1.85± 48 0.14 mm vs PBS: 1.11 ± 0.21 mm; FR/NPs: 1.45± 0.17 mm; 49 MAP: 1.6 \pm 0.13 mm; Figure 5C). In addition, the reduced 50 cardiac remodeling of FR/NPs, MAP gel, and FR/drugMAP-51 treated groups was further demonstrated by the reduction in 52 left ventricle end-diastolic volume (LVEDV) and end-systolic 53 volume (LVESV), respectively, compared with PBS controls 54 55 (Figure 5D,E). The ventricular ejection fractions (LVEF) at day 2 baseline were similar between all groups, indicating a similar 56 degree of initial MI injury (Figure 5F). However, after 5 weeks, 57 the LVEF of PBS-treated group distinctly declined, while LVEF 58 was well preserved in the FR/NPs, MAP gel, and FR/drugMAP-59

IENCE NEWS www.advancedsciencenews.com

4DVANCED

SC

1

2

3

4

5

6

7

8

9

48 48 Figure 4. In vitro cellular evaluations of drugs and drugMAP gels. A) The summarized drug effects of forskolin (F), Repsox (R), and FR on various 49 49 cardiac remodeling-associated cells. Sign + represents a positive effect, and sign - represents a negative effect. B) Cumulative drug release profiles 50 50 from FR/NPs (FR loaded NPs) and FR/drugMAP (F and R loaded drugMAP gel). C) Live and dead staining of neonatal cardiomyocytes cultured in the indicated conditions on day 3, and D) cell viability of neonatal cardiomyocytes. E) Myo-differentiation of neonatal cardiac fibroblasts cultured in the 51 51 indicated conditions on day 5, and F) mean fluorescent intensity of & SMA in (E). G) Representative fluorescent images of vascular network formation. 52 52 Human umbilical vein endothelial cells (HUVECs) are cultured at the indicated conditions for 16 h and stained with Calcein-AM. H) Quantification of 53 53 junction numbers, tube numbers and mesh numbers. Data are shown as mean \pm SD. *p < 0.05 and **p < 0.01 indicate comparisons to blank. ##p < 0.0154 54 indicates comparisons to R condition. NS represents no significant difference. 55 55

treated groups. Notably, FR/drugMAP-treated rats displayed the best LV contractility of infarcted hearts with the highest LVEF (FR/drugMAP: 53.6 ± 5.2% vs PBS: 33.7 ± 4.9%; FR/

NPs: 44.9 \pm 3.1%; MAP: 47.7 \pm 5.3%; Figure 5F) and the highest 57 therapeutic efficiencies (change of LVEFs from baseline, 58 Figure 5G). Overall, the cardiac remodeling was significantly 59

56

57

58

59

56

FUNCTIONAL

www.afm-journal.de

49 49 Figure 5. Cardiac functional assessment in the rat acute MI model. A) Representative Masson's trichrome-stained sections of infarcted rat hearts after 50 50 5 weeks treatment with PBS, FR/NPs, MAP gel and FR/drugMAP gel. (Bottom) High-magnification views of the infarcted zones. B) Quantitative 51 analyses of infarcted size (as % of the total LV area). C) Quantitative analyses of infarcted minimum LV wall thickness. D) LVEDV and E) LVESV of 51 infarcted hearts measured by echocardiography at 5 weeks. E) LV ejection fraction (EF) of infarcted hearts at day 2 (baseline) and week 5 after treatment. 52 52 G) Change in LVEF in comparison to baseline (Δ LVEF). Data are shown as mean ± SD. PBS (n = 9), FR/NPs (n = 6), MAP (n = 9) and FR/drugMAP 53 53 gel (n = 9). *p < 0.05 and **p < 0.01 indicate significant difference in comparison to the PBS control group. *p < 0.05 and **p < 0.01 in (F) indicate 54 54 comparisons of 5 week treated group to the corresponding baseline. NS represents no significant difference. 55 55

attenuated by the treatment with FR/NPs or MAP gel alone,
indicating the respective benefits of the drugs (F and R)^[27,38]
and hydrogel-based mechanical support^[5,9] in ameliorating

post-MI remodeling and rescuing cardiac dysfunction. Com-57pared to treatment alone, the integrated FR/drugMAP showed58the best therapeutic outcomes.59

56

www.advancedsciencenews.com

FUNCTIONAL MATERIALS www.afm-journal.de

Figure 6. DrugMAP promotes angiogenesis and reduces inflammatory response in MI therapy. A) Representative images of angiogenesis staining with α -SMA (green) and vWF (magenta) in the central infarct LV zone of hearts treated with PBS, FR/NPs, MAP, and FR/drugMAP gel at 5 weeks. Microgel beads were labeled by AF546 dye (red) for material tracking. B) Representative images of macrophage staining with CD68 (green). Quantification of C) capillary density (vWF+ vessels), D) arteriolar density (α -SMA+ vessels) and E) macrophage density in the central infarct LV zone of hearts treated with PBS (n = 9), FR/NPs (n = 6), MAP (n = 9), and FR/drugMAP (n = 9) at 5 weeks. Data are shown as mean \pm SD. *p < 0.05 and **p < 0.01 indicate significant difference in comparison to PBS control group.

To reveal the underlying mechanisms for the functional effects of drugMAP, we further performed immunostaining analysis and assessed angiogenesis and immune response in the infarcted hearts (Figure 6). Infarcted hearts were stained with von Willebrand factor (vWF, for ECs) and α -SMA (for smooth muscle cells) (Figure 6A; Figure S9, Supporting Information), and the results showed that the numbers of both capillaries (vWF⁺) and arterioles (α -SMA⁺) were significantly increased in FR/NP-treated and FR/drugMAP-treated groups in comparison to PBS and MAP-treated groups (Figure 6C,D). Notably, the FR/drugMAP-treated hearts exhibited prominent angiogenesis, while there was less angiogenesis treated with MAP gel alone, suggesting that the drugs further promote neovascularization. Additionally, in contrast to PBS-treated hearts, other three treatments showed less CD68⁺ macrophage infiltra-tion in the infarcted hearts, especially for the FR/drugMAP-treated group (Figure 6B,E; Figure S10, Supporting Informa-tion), demonstrating that both drug and MAP gel could reduce the inflammatory responses in MI hearts, and their combination and integration could further enhance the efficiency. Together, these in vivo results suggest that the integrated drugMAP could enhance the MI therapeutic effects through the promotion of neovascularization and the inhibition of inflam-matory response.

To date, numerous injectable hydrogels have been investi-gated for cardiac repair and regeneration. However, rapid host

tissue integration and spatiotemporal control of biologics pres-entation are challenges for most natural and synthetic bulk hydrogels, which can compromise the efficacy of the hydrogel-based therapy for cardiac repair. In recent years, very few gran-ular hydrogels have been exploited in tissue repair. $^{[15a,16,42]}$ By 38 annealing the μ Gel building blocks to form porous scaffolds, 39 the granular hydrogel permits several noteworthy features. 40 First, the small size of μ Gel enables minimally invasive injec-41 tion. Second, the modular building makes it flexible to engineer 42 multiscale physical properties by varying polymer composition, 43 μ Gel shape, size and stiffness, and interparticle friction. Third, granular hydrogels possess porosity and diffusivity and can be tuned to support cell proliferation and migration. For example, the injection of granular porous hyaluronic acid hydrogels into myocardial tissues demonstrated the degradation behavior and cell invasion after 3 weeks.^[43] However, this study did not eval-uate the MI therapeutic outcomes by histology and echocardi-ography analysis.

Injectable hydrogels are promising for localized drug and 52 cell delivery in many biomedical applications. Current granular 53 hydrogel systems have been used for the sustained delivery of 54 hydrophilic biologics (cells and drugs). For example, heparin has 55 been incorporated into microparticles to sustain the delivery of 56 growth factors through electrostatic associations.^[44] Similarly, protein activators or inhibitors such as antibodies can also be delivsered, while they are more expensive and may lose activity through 59

www.advancedsciencenews.com

proteolytic enzymatic digestion and degradation over time. In 2 contrast, small molecules are generally more stable, cheaper, 3 and easier to be loaded into a drug delivery system. However, it 4 is still challenging to pack hydrophobic drugs into microfluidic-5 generated granular hydrogel systems. Delivery of hydrophobic 6 drugs or cargos can be controlled by loading the drugs into 7 hydrophobic carriers (such as NPs). However, these hydrophobic 8 particles can aggregate into clusters and precipitate quickly in the 9 hydrophilic pregel solution, resulting in the blockage of micro-10 fluidic channels and unstable drug loading, as shown in this 11 study. Here we achieved the uniform encapsulation hydrophobic drug-loaded NPs within microfluidic-generated hydrophilic μ Gel 12 beads by modulating NP surface hydrophilicity and the viscosity 13 of the pregel solution for controlled hydrophobic drug delivery.

14 15 In this study, F and R were evaluated and loaded into the drugMAP for MI therapy. Both hydrophobic drugs can be sus-16 17 tained release in two weeks in vitro. There was a partial release 18 of both drugs during the production phase of drugMAP, due to 19 the burst release occurring when the NPs were suspended in an 20 aqueous pregel solution or embedded in MAP gel. Depending 21 on the therapeutic purpose, the drug release period from NPs can be tailored from hours to months, by tuning the polymer 22 23 composition, molecular weight, and the content of the hydrophilic block.^[31,45] Besides the intrinsic release profile from drug-24 25 loaded NPs, the amount of NPs encapsulated in each μ Gel and 26 the volume of μ Gels are also critical parameters to determine the 27 overall drug release profile and pharmacologic effects. Further-28 more, we have systematically analyzed the MI therapeutic out-29 comes of drugMAP systems by histology, echocardiography and immunostaining. We found that the integrated FR/drugMAP 30 31 could significantly ameliorate cardiac remodeling and dysfunction, in comparison to FR/NPs only and MAP-only groups, by 32 inhibiting fibrosis and inflammatory response, and promoting 33 34 cell migration and neovascularization. It is worth noting that 35 the drugMAP gel has shown partial degradation in vivo after 5 36 weeks. A longer study is needed to determine the potential long-37 term benefits on cardiac repair, and large animal studies need to 38 be performed before advancing into clinical studies.

39 40

41 3. Conclusions 42

43 In summary, we first developed an annealing drug-releasing drugMAP hydrogel, through overcoming challenges in inte-44 45 grating hydrophobic NPs within microfluidic-generated hydrophilic μ Gel beads. DrugMAP was loaded with 46 hydrophobic drugs (F and R), and injected into ischemic heart, 47 which promoted cardiac repair by offering multifunctional ben-48 49 efits, including fast cell infiltration, mechanical support, and 50 synergistic pharmacological effects. Our findings suggest that 51 drugMAP has a great potential for MI therapy and broad bio-52 medical applications in soft tissue repairs and disease therapies.

53

54 55

4. Experimental Section 56

57 Microfluidic Device Fabrication: Droplet generating microfluidic devices were fabricated by soft lithography as previously described.^[15a] 58 Briefly, master molds were fabricated on silicon wafers (University 59

www.afm-journal.de

wafer) using two-layer photolithography with KMPR 1050 photoresist 1 (Microchem Corp). The height for the droplet formation channel was 2 50 µm, and the height for the collection channel was 150 µm. Devices 3 were molded from the masters using poly(dimethyl)siloxane (PDMS) 4 (Sylgard 184 kit, Dow Corning). The base and crosslinker were mixed 5 at a 10:1 mass ratio, poured over the mold and degassed before curing 6 overnight at 65 °C. Channels were sealed by treating the PDMS mold and a glass microscope slide (VWR) with oxygen plasma (Plasma 7 Cleaner, Harrick Plasma) at 500 mTorr and 80 W for 30 s. Thereafter, 8 the channels were functionalized by injecting 100 μL of Aquapel 9 (88625-47100, Aquapel) and reacting for 30 s until washed by Novec 10 7500 (9802122937, 3M). The channels were dried by air suction and kept 11 in the oven at 65 °C until used.

12 Preparation and Characterization of Drug-Loaded NPs: An emulsification solvent evaporation technique was applied to prepare NPs.^[46] Briefly, 13 different PLGA based polymers, including PLGA ($M_w = 35$ kDa, acid-14 terminated, cat# 26270, Polysciences), PLGA55k-b-PEG5k (PLGA 15 average $M_n = 55$ kDa, PEG average $M_n = 5$ kDa, cat# 764752, Sigma), 16 PLGA25k-b-PEG5k (PLGA average $M_n = 25$ kDa, PEG average 17 $M_n = 5$ kDa, cat# 764 752, Sigma), and mixed PLGA35k/PLGA55k-b-18 PEG5k (50/50 wt/wt) were dissolved in dichloromethane to make 10% 19 w/v solutions. The resulting solution (1 mL) was added to stirred 3 mL 1% (w/v) poly(vinyl alcohol) (PVA, $\overline{M_w} = 25$ kDa, 88% hydrolyzed, cat# 20 15132, Polysciences) solution using a vortex mixer at 2000 rpm for 2 min, 21 and the emulsified polymer solution was immediately sonicated with 22 a 20% amplitude (Sonic Dismembrator 500, Thermo Fisher Scientific) 23 in six 10 s bursts. The test tube was immersed in ice water during 24 sonication. After sonication, the emulsion was added dropwise into 25 30 mL 1% (w/v) PVA solution and stirred for 3 h at room temperature to remove the residual organic solvent. NPs were collected and 26 washed three times with distilled water by centrifugation at 10 000 \times g 27 for 5 min at 4 °C, and the NPs were stored at -80 °C refrigerator. Particle 28 diameter was measured by dynamic light scattering (DLS), and the 29 surface morphology was observed by SEM with gold electrospray.

30 To prepare the fluorescence-labeled NPs, 0.02% (w/v) coumarin-6 31 (green fluorescence, Sigma) was added and dissolved in the polymer 32 solution for NPs fabrication. In addition, forskolin (cat# 11018, Cayman Chemical) and Repsox (cat# 14794, Cayman Chemical) were selected 33 and loaded into NPs to generate FR/NPs. The aforementioned protocol 34 was used, but 5% (wt/wt) of hydrophobic drugs with the same molar 35 ratio of F and R were added and dissolved in the polymer solution of 36 PLGA35k/PLGA55k-b-PEG5k (50/50 wt/wt).

37 Preparation of drugMAP Building Blocks: The MMP sensitive PEG-based microgel (μ Gel) beads were prepared by a customized 38 microfluidic device with two separate pregel aqueous solutions, 39 as previously described.^[15a] Aqueous solution 1: 10% (w/v) 4-arm 40 PEG vinyl sulfone (M_w = 20 kDa, JenKem Technology USA Inc.) in 41 300×10^{-3} M triethylamine (Sigma), pH 8.25, prereacted with 250×10^{-6} M 42 K-peptide (Ac-FKGGERCG-NH_2, Genscript), 250 \times 10⁻⁶ $\,$ M Q-peptide 43 (Ac-NQEQVSPLGGERCG-NH₂, Genscript), and 500 \times 10⁻⁶ \bowtie RGD 44 peptide (Ac-RGDSPGERCG-NH₂, Genscript). Aqueous solution 2: 8 \times 45 10^{-3} M dicysteine modified metalloprotease-sensitive peptide crosslinker (MMP-sensitive crosslinker, Ac-GCRDGPQGIWGQDRCG-NH₂, 46 Genscript), prereacted with 10×10^{-6} M Alexa-fluor 568-maleimide (Life 47 Technologies). 48

Both aqueous solutions were injected at the defined flow rates in 49 a 1:1 volume mixture. Meanwhile, Novec 7500 Engineered Fluid (cat# 50 7100025016, 3M) with 0.1% Pico-Surf (SF-000149, Sphere Fluidics) acting as a surfactant was used as the continuous oil phase, with the flow rate 51 at 150 μL mL^-1. μGel beads were collected into a Corning centrifuge tube 52 and cured at 37 °C for two hours. Thereafter, the cured μ Gel beads were 53 extracted and purified from the oil phase with a mixed solution of HEPES 54 buffer (100 \times 10⁻³ $\,$ M HEPES, 40 \times 10⁻³ $\,$ M NaCl, pH 7.4) and hexane in a 55 1:1 volume, and centrifuged at 3000 rpm for 5 min at 4 °C. The μ Gel 56 pellets were further washed in HEPES buffer with 0.01% w/v Pluronic 57 F-127 (Sigma) for five times to move the resident oil components. The μ Gel aqueous solution was further allowed to swell and equilibrate with 58 HEPES buffer at 4 °C. 59

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

20

Q3

www.advancedsciencenews.com

To make NPs encapsulated microgel (NPs- μ Gel), different amounts of NPs (0%, 25%, 50%, 100% weight percentage of NPs to the weight of dry pregel components) was dispersed in aqueous solution 1. To enhance the uniform distribution of NPs in the μ Gel and stable droplet preparation, 0.25% (w/v) hyaluronic acid (HA700K, Lifecore Biomedical, LLC) was added in the dispersed particle solution.

For in vitro cell culture and in vivo evaluation, all μ Gel beads (pure μ Gel, NPs- μ Gel, FR/drugMAP) were prepared with sterilized devices (PDMS device, connecting tubes) and sterile filtered pregel components by a 0.2 μ m polyethersulfone membrane. All procedures were performed in a biosafety cabinet.

Size and Swelling Ratio: To determine the operational regime of droplet generation, at least five images of droplets in the channel were taken using a high-speed camera (Phantom) at each flow rate condition. The size distribution was analyzed by a custom-developed MATLAB code. The size of swollen μ Gel droplets in buffer solution was also measured in the same manner, and the volume swelling ratio was calculated by the following equation

$$\frac{18}{19} \qquad Q_{\rm v} = \frac{d_{\rm aq}^3}{d_{\rm oil}^3} \tag{1}$$

where Q_v is the volume swelling ratio of a single droplet, d_{aq} is the diameter of droplets in the aqueous phase (HEPES buffer), and d_{oil} is the diameter in the oil phase (Novec 7500).

23 NP Loading Concentration and Efficiency in µGel: The NP loading 24 concentration in μ Gel was quantified by measuring fluorescent intensity 25 of coumarin-labeled NPs. Briefly, the concentrated coumarin-labeled 26 NPs- μ Gel beads were diluted with HEPES buffer, and 100 μ L solution was transferred to a 96-well plate to measure the fluorescent intensity 27 (excitation: 485 nm, emission: 528 nm) by using a plate-reader. 28 Meanwhile, the coumarin-labeled NPs were diluted in HEPES buffer 29 (0 to 8 mg mL⁻¹, 10 serial dilution points) to make the standard curve. 30 The NPs loading efficiency was calculated by the following equation 31

$$\begin{array}{l} 32\\ 33\\ \end{array}$$
Particle loading efficiency (%) = 100 × $\left(\begin{array}{c} Particle \ loading \ concentration \times \ Swollen\\ volume \ / \ Primary \ loading \ amount\\ \end{array}\right)$ (2)

Degradation of drugMAP Building Blocks: To study the degradation 35 and model drug release profiles of drugMAP building blocks, NPs 36 were labeled by coumarin-6 dye and μ Gels were labeled by AF546 dye. 37 100 μ L of NPs- μ Gel beads were added to the 1 mL PBS or collagenase 38 II solutions (ranging from 1.6 mU mL⁻¹ to 1 U mL⁻¹ in PBS with 39 calcium and magnesium) in centrifuge tubes and incubated at 37 °C 40 with rotation at 20 rpm (n = 4 for each group). Three days later, hydrogel beads were centrifuged at 6000 rpm for 5 min, and 200 μ L 41 of the supernatant was transferred to a 96-well plate for measuring 42 the release of coumarin-6 (excitation: 485 nm, emission: 528 nm) 43 and AF546 (excitation: 556, emission: 573 nm) using a plate reader 44 as surrogates for model drug release and hydrogel degradation, 45 respectively. The μ Gel beads were washed three times with PBS, and 46 pushed through a 110 μ m \times 110 μ m square microfluidic channel and imaged with fluorescence microscopy to measure the remaining model 47 drug and AF546 as well as the deformability and swollen shape of the 48 μ Gel beads. 49

Pore Size and Void Fraction of MAP and drugMAP Scaffolds: Fully 50 swollen and equilibrated MAP or drugMAP building blocks (20 μ L) 51 were activated by with 5 U mL^{-1} FXIIIa (Sigma) and 1 U mL^{-1} thrombin 52 (Sigma), and the mixture was pipetted into a 3 mm diameter PDMS well on a glass coverslip, and annealed in a humidified incubator at 37 °C 53 for 1.5 h to form porous MAP or drugMAP scaffolds. Thereafter, the 54 scaffolds were placed into HEPES buffer (pH 7.4) overnight to reach 55 equilibrium. Samples were 3D imaged using a Leica TCS SP8 confocal 56 microscope with 10× objective, spanning 1.16 mm × 1.16 mm (in x- and 57 y-axis) \times 200 μ m (in z-axis). The pore size was analyzed using a custom 58 script written in MATLAB and the void fraction was calculated using 59 ImageJ (stack function).

www.afm-journal.de

Rheology Properties: To determine the effects of particle loading 1 amount on the gelation and gel rheology properties, rheological 2 measurements were performed on bulk gel samples using a DHR-2 3 rheometer (TA Instruments). Briefly, different amounts of PLGA35k/ 4 PLGA55k-b-PEG5k (50/50) NPs (0%, 25%, 50%, 100%, 200% of PEG 5 weight) were quickly vortexed with two pregel aqueous solutions (basic 6 aqueous solution 1 and 2 in 1:1 volume). To make a disk gel sample, 7 a 40 µL mixed particle-containing solution was pipetted onto sterile slide glass siliconized with Sigmacote (SL2-25ML, Sigma-Aldrich), 8 and covered with another glass slides with 1 mm spacer, followed with 9 curing at 37 °C for 2 h. Disc gels were swollen to equilibrium in HEPES 10 buffer overnight before rheological measurements. A frequency sweep of 11 0.1-10 Hz was performed by using an 8 mm Peltier Plate-Crosshatched 12 surface (TA Instruments), and the storage modulus and loss modulus 13 were calculated from the average of the linear range. At least, four-disc gel samples were measured for each condition. 14

Drug Release Assay: Briefly, 2 mg of FR/NPs or 200 µL FR/drugMAP 15 beads was dispersed in a 0.22 μm filters inserted in a centrifuge tube 16 (Corning Costar Spin-X Centrifuge Tube, Thermo Fisher Scientific) 17 with 1 mL PBS (pH 7.4) at 37 °C, with continuous shaking. At discrete 18 time intervals (16 h, 1, 2, 4, 6 days), 0.5 mL of the sample solution was 19 collected from the tube and frozen for the later analysis. Aliquots of the solutions were analyzed by reversed-phase separation and detection 20 using tandem mass spectrometry with multiple reactions monitoring 21 with previously optimized conditions for parent ion production and 22 fragment ion detection on a triple quadrupole mass spectrometer 23 (Agilent 6460). Quantification was achieved with the external standards 24 for both analytes. All experimental samples were analyzed in triplicate 25 and all results were reported as mean \pm standard error of the mean.

Cellular Uptake of NPs: To check cellular uptake of NPs released from 26 NPs- μ Gels, primary mice skin fibroblasts were seeded in 24-well plates at 27 the density of 10 000 cells cm⁻² and coincubated with 0.1 mg coumarin-28 labeled NPs or 20 μ L NPs- μ Gel (50) beads (around the same weight 29 of NPs) in the inserted Transwell (8 µm pore size), and cultured in the 30 DMEM medium supplemented with 10% fetal bovine serum (FBS) and 31 1% penicillin/streptomycin (P/S). Cells were incubated in a humidified atmosphere containing 5% CO2 at 37 °C. Adhered cells were washed 32 twice with PBS and fixed with 4% paraformaldehyde (PFA) on day 1 33 and day 4. The samples were stained with phalloidin F-actin and DAPI. 34 The fluorescent images were taken by Zeiss Axio Observer Z1 inverted 35 microscope and the fluorescent intensity was measured by Image J.

36 Cell Isolation: Primary neonatal rat cardiomyocytes and fibroblasts 37 were isolated from the hearts of 1-2 day old Sprague-Dawley rat pups as described previously with minor modifications.^[47] Briefly, the cardiac 38 tissue was minced and digested with 80 units mL⁻¹ collagenase II 39 (Worthington) and 0.8 mg mL⁻¹ pancreatin (Sigma) at 37 °C in a water 40 bath. Neonatal calf serum (NCS) was applied to inactivate enzymatic 41 activity in the digested cell mixture. The cell solution was filtered 42 through 100 μm mesh and centrifuged at 2200 rpm for 3 min. The cell 43 pellets were suspended in 1 mL NCS and further separated by Percoll 44 density gradient centrifugation. A two-layer density gradient was formed consisting of 40.5% Percoll (GE17-0891-01, Sigma) solution in the top 45 layer and 58.5% Percoll solution in the bottom layer. The cell suspension 46 was layered on top of the gradient and centrifuged at 3000 rpm at 47 room temperature for 30 min. Fibroblasts equilibrated and collected 48 form the top of the transparent Percoll solution. Cardiomyocytes could 49 subsequently be removed from the newly formed layer between the 50 Percoll solutions and harvested separately. Both cells were washed with warm DMEM medium containing 10% FBS and 1% P/S and used 51 immediately. 52

Cell Culture and Evaluation of Drug Effects In Vitro: The drug effects on cardiomyocyte viability and proliferation were evaluated. Isolated cardiomyocytes were calculated and seeded on 0.1% gelatin-coated twenty-four well tissue culture plate with a density of 20 000 cells cm⁻², and cultured at 37 °C in a humidified, 5% CO₂ incubator overnight in DMEM/medium 199 (4/1) containing 10% FBS, 1% NEAAs, and 1% P/S. The next day, the culture medium was replaced by fresh medium containing 20×10^{-6} M F, R or their combination. The medium was

2

38

39

40

43

44

45

46

changed every other day. Cell viability assay and proliferation assay of cardiomyocytes were performed at days 1, 3, and 5. A live/dead kit (Invitrogen) was for cell viability assay, and images were taken using inverted microscope fluorescence microscopy (Zeiss Axio Observer Z1) to determine the cell numbers and the percentage of dead cells. To analyze the proliferation of cardiomyocyte, cells were stained by the Click-iT EdU assay (Invitrogen) as the vendor-provided protocol. Briefly, cells treated with EdU concentration of 10 ×10⁻⁶ M for 24 h before fixing with 4% PFA in PBS, followed with EdU detection and immunofluorescent staining with cTnT antibody (DSHB).

4DVANCED

1

2

3

4

5

6

7

8

CIENCE NEWS

www.advancedsciencenews.com

9 The drug effects on cardiac fibroblast proliferation and 10 myodifferentiation were evaluated. Fibroblasts were seeded on 24-well 11 tissue culture plate with a density of 5000 cells cm⁻² and cultured 12 overnight in DMEM containing 10% FBS and 1% P/S. On the next day, 13 the culture medium was replaced by the fresh medium containing F and R at the determined concentrations and combinations, and the 14 medium was changed every other day. MTS cell proliferation assay (cat# 15 PR-G3582, Thermo Fisher Scientific) was performed on days 1, 3, and 16 5 by following the protocol from the manufacturer. Meanwhile, some 17 cells were fixed with 4% PFA for myodifferentiation assay by fluorescent 18 staining using α -SMA antibody (Abcam) and phalloidin (for F-actin) 19 (Thermo Fisher Scientific).

20 The drug effects on EC proliferation and network formation were evaluated. Human umbilical vein endothelial cells (HUVECs) were 21 seeded on 0.1% gelatin-coated 24-well plates with a density of 5000 22 cells cm^{-2} and cultured overnight in DMEM containing 10% FBS and 23 1% P/S. On the next day, the culture medium was replaced by the fresh 24 medium containing F and R at the determined concentrations and 25 combinations, and the medium was changed every other day. MTS cell 26 proliferation assay was performed on day 1, 3, and 5. In addition, the 27 ECs network formation was examined on growth factor reduced Matrigel according to the manufacturer's instructions (cat# CB-40230C, Thermo 28 Fisher Scientific). Briefly, 24-well plates were coated with Matrigel. ECs 29 were digested and plated onto a layer of Matrigel at a density of 3 \times 30 10⁵ cells per well in M199 medium containing 1% FBS and 1% P/S, with 31 the addition of F and R. Vascular endothelial growth factor (VEGF, 20 ng 32 mL⁻¹) was used as a positive control. After 16 h of culture, cells were stained with calcein acetoxymethyl ester (calcein-AM) and observed with 33 an inverted fluorescent microscope. The number of tubular structure, 34 junctions and meshes were analyzed by Image J with the Angiogenesis 35 Analyzer plugin (n = 4-6 per group).

36 The effects of drugs released from FR/NPs and FR/NPs-μGel beads 37 were evaluated using the methods mentioned above. During cell culture, 38 2 mg FR/NPs or 100 μL FR/NPs-μGel (100) (theoretical loading weight 39 of NPs ≈2 mg) was added in the inserted Transwell (0.4 μm pore size) in 40 24-well plates with cultured cells.

MI Model and Intramyocardial Injection of drugMAP: All animal 41 work was conducted under protocols approved by the University of 42 California Los Angeles (#2016-101-11) and the University of California 43 San Francisco (#AN176681-02) and was performed in accordance with 44 the recommendations of the American Association for Accreditation of Laboratory Animal Care. The ischemia-reperfusion MI model 45 was established as previously described.[40b] Briefly, the left anterior 46 descending coronary artery of female Sprague-Dawley rats (200-250 g, 47 8-10 weeks) underwent ligation for 30 min, followed by reperfusion. The 48 intramyocardial injections (50 µL, twice) of sterile PBS, FR/NPs (20 mg 49 mL⁻¹ in PBS), MAP gel and FR/drugMAP gel were performed 2 days 50 post-MI via ultrasound-guided transthoracic injection using a 27-gauge 51 syringe. The successful injection was confirmed by a slight local increase 52 of ultrasound signal in the LV wall.

Echocardiographic Assessment: Echocardiography was performed at
 2-day post-MI and five weeks post-injection using standard methods
 as previously described.^[40b,48] Transthoracic echocardiography was
 performed with a 15-MHz linear array transducer system (Sequoia c256,
 Acuson, Erlangen, Germany) on all animals anesthetized with isoflurane.
 The left ventricular end-diastolic volume (LVEDV), left ventricular end systolic volume (LVESV), and ejection fraction (LVEF) were measured.
 All measurements were the averages of three consecutive cardiac cycles.

Cases where ejection fraction was above 45% at day 2 were excluded from echocardiographic and histological analyses because they indicated an insufficient infarct model.

an insufficient infarct model. *Histology and Immunostaining*: At 5 weeks after the injection, all rats were sacrificed for tissue harvesting. The hearts were embedded in optimal cutting temperature (OCT) compound, fresh frozen by dry ice immediately, and stored at -80 °C. All tissue blocks were cryosectioned at a thickness of 10 µm by a cryostat microtome (HM525 NX, Thermo Fisher Scientific) starting from the apex of the left ventricle, and 10 serial sections were collected for every 500 µm intervals. All slides were kept at -20 °C for later staining.

10 Sections were stained with Masson's trichrome staining using 11 standard protocols and images were captured with an inverted 12 microscope (Nikon, Eclipse Ti-S fluorescence microscope). Masson'strichrome staining images were used to evaluate the infarct size, fibrosis 13 area and LV wall thickness with Image J software. The infarct size or 14 scar area (% LV) was calculated by dividing the collagen deposited 15 area to the entire left ventricle area. LV wall thickness was calculated by 16 averaging the minimum infarcted LV wall thickness of all samples for 17 each group.

18 For immunofluorescent staining, cell samples or air-dried tissue 19 slides were fixed with 4% PFA for 10 min at room temperature, permeabilized with 0.1% Triton X-100 for 15 min, and blocked with 10% 20 normal goat serum for 1 h at room temperature. The cell samples and 21 slides were incubated with primary antibodies, against α -SMA (rabbit, 22 Abcam, ab5694, 1:300), Von Willebrand Factor (vWF, sheep, Abcam, 23 ab11713), CD68 (mouse, Abcam, ab955, 1:300), cardiac Troponin T (cTnT, 24 mouse, DSHB, 1:200) or Ki67 (Rabbit, Abcam, ab16667, 1:200) overnight 25 at 4 °C. Thereafter, appropriate Alexafluor 488- or Alexafluor 546- or Alexa fluor 637-conjugated secondary antibodies (Thermo Fisher Scientific) 26 was added and incubated for 1 h at room temperature. Thereafter, 27 nuclei were stained with 4',6-diamindino-2-phenylindole (DAPI, 1:2500 28 in sterilized deionized water, Sigma) for 10 minutes in the dark. All 29 fluorescent images were taken with Zeiss Axio Observer Z1 inverted 30 microscope and confocal Inverted Leica TCS-SP8-SMD Confocal 31 Microscope.

Statistical Analysis:Data are presented as means \pm standard32deviations, calculated from the average of at least three biological33replicates unless otherwise specified. Statistical analysis was performed34using one-way analysis of variance (ANOVA), followed by post-hoc35analysis with Turkey's test using Origin 8 software. p values < 0.05 were</td>36considered statistically significant.37

Supporting Information

Supporting Information is available from the Wiley Online Library or 41 from the author. 42

Acknowledgements

J.F., J.K., and Q.F. contributed equally to this work. The authors 47 were supported in part by a grant from the National Institutes of 48 Health (HL121450 to S.L.), the National Institute of Arthritis and 49 Musculoskeletal and Skin Diseases of the NIH under the Ruth L. 50 Kirschstein National Research Service Award (T32AR059033 to J.S.), UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem 51 Cell Research Innovation Award (to S.L.), UCLA startup funding, by the 52 Presidential Early Career Award for Scientists and Engineers (N00014-16-53 1-2997 to D.D.C.), Kwanjeong Graduate Scholarship (to J.K.), and UCLA 54 MSTP training grant (NIH NIGMS training grant GM008042). SEM was 55 performed at the California NanoSystems Institute (CNSI) Electron 56 Imaging Center for NanoMachines (EICN) Shared Resource Facility 57 at UCLA. Confocal laser scanning microscopy was performed at the California NanoSystems Institute (CNSI) Advanced Light Microscopy/ 58 Spectroscopy Shared Resource Facility at UCLA. 59

IDVANCED SCIENCE NEWS

www.advancedsciencenews.com

Conflict of Interest

thors declare no conflict of interest.

Keywords

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

21

drug delivery, granular hydrogel, microgel, myocardial infarction, tissue engineering

Received: May 19, 2020 Revised: June 27, 2020 Published online:

- [1] A. N. Nowbar, M. Gitto, J. P. Howard, D. P. Francis, R. Al-Lamee, Circ. Cardiovasc. Qual. Outcomes 2019, 12, e005375.
- [2] D. J. Hausenloy, D. M. Yellon, Nat. Rev. Cardiol. 2016, 13, 193.
- [3] J. L. Anderson, D. A. Morrow, N. Engl. J. Med. 2017, 376, 2053.
- [4] a) K. Rodgers, A. Papinska, N. Mordwinkin, Adv. Drug Delivery Rev. 20 2016, 96, 245; b) T. J. Cahill, R. P. Choudhury, P. R. Riley, Nat. Rev. Drug Discovery 2017, 16, 699.
- [5] a) A. Hasan, A. Khattab, M. A. Islam, K. Abou Hweij, J. Zeitouny, 22 R. Waters, M. Sayegh, M. M. Hossain, A. Paul, Adv. Sci. 2015, 23 2, 2198; b) S. B. Seif-Naraghi, J. M. Singelyn, M. A. Salvatore, 24 K. G. Osborn, J. J. Wang, U. Sampat, O. L. Kwan, G. M. Strachan, 25 J. Wong, P. J. Schup-Magoffin, R. L. Braden, K. Bartels, 26 J. A. DeQuach, M. Preul, A. M. Kinsey, A. N. DeMaria, N. Dib, 27 K. L. Christman, Sci. Transl. Med. 2013, 5, 173ra25; c) A. S. Carlini, 28
- R. Gaetani, R. L. Braden, C. Luo, K. L. Christman, N. C. Gianneschi, 29 Nat. Commun. 2019, 10, 1735; d) Y. Matsumura, Y. Zhu, H. B. Jiang,
- 30 A. D'Amore, S. K. Luketich, V. Charwat, T. Yoshizumi, H. Sato, 31 B. Yang, T. Uchibori, K. E. Healy, W. R. Wagner, Biomaterials 2019, 217. 119289.
- 32 [6] a) X. Lin, Y. Liu, A. Bai, H. Cai, Y. Bai, W. Jiang, H. Yang, 33 X. Wang, L. Yang, N. Sun, H. Gao, Nat. Biomed. Eng. 2019, 3, 34 632; b) M. Montgomery, S. Ahadian, L. D. Huyer, M. Lo Rito, 35 R. A. Civitarese, R. D. Vanderlaan, J. Wu, L. A. Reis, A. Momen, 36 S. Akbari, A. Pahnke, R. K. Li, C. A. Caldarone, M. Radisic, Nat. Mater. 37 2017, 16, 1038; c) I. Y. Shadrin, B. W. Allen, Y. Qian, C. P. Jackman, 38 A. L. Carlson, M. E. Juhas, N. Bursac, Nat. Commun. 2017, 8, 1825.
- 39 [7] a) R. Passier, L. W. van Laake, C. L. Mummery, Nature 2008, 40 453, 322; b) P. Menasche, Nat. Rev. Cardiol. 2018, 15, 659; c) F. Weinberger, K. Breckwoldt, S. Pecha, A. Kelly, B. Geertz, 41 J. Starbatty, T. Yorgan, K. H. Cheng, K. Lessmann, T. Stolen, 42 M. Scherrer-Crosbie, G. Smith, H. Reichenspurner, A. Hansen, 43 T. Eschenhagen, Sci. Transl. Med. 2016, 8, 363ra148. 44
- [8] a) L. Qian, Y. Huang, C. I. Spencer, A. Foley, V. Vedantham, 45 L. Liu, S. J. Conway, J. D. Fu, D. Srivastava, Nature 2012, 485, 593; 46 b) T. M. A. Mohamed, Y. S. Ang, E. Radzinsky, P. Zhou, Y. Huang, 47 A. Elfenbein, A. Foley, S. Magnitsky, D. Srivastava, Cell 2018, 173, 48 104; c) H. Hashimoto, E. N. Olson, R. Bassel-Duby, Nat. Rev. 49 Cardiol. 2018, 15, 585; d) M. Mahmoudi, M. Yu, V. Serpooshan, 50 J. C. Wu, R. Langer, R. T. Lee, J. M. Karp, O. C. Farokhzad, Nat. 51 Nanotechnol. 2017, 12, 845.
- [9] a) L. C. Lee, S. T. Wall, D. Klepach, L. Ge, Z. H. Zhang, R. J. Lee, 52 A. Hinson, J. H. Gorman, R. C. Gorman, J. M. Guccione, Int. J. 53 Cardiol. 2013, 168, 2022; b) R. J. Lee, A. Hinson, R. Bauernschmitt, 54 K. Matschke, Q. Fang, D. L. Mann, R. Dowling, N. Schiller, 55 H. N. Sabbah, Int. J. Cardiol. 2015, 199, 18.
- 56 [10] a) N. Annabi, J. W. Nichol, X. Zhong, C. D. Ji, S. Koshy, 57 A. Khademhosseini, F. Dehghani, Tissue Eng., Part B 2010, 16, 371; 58 b) K. J. De France, F. Xu, T. Hoare, Adv. Healthcare Mater. 2018, 7, 59 1700927.

www.afm-journal.de

- [11] N. Huebsch, E. Lippens, K. Lee, M. Mehta, S. T. Koshy, 1 M. C. Darnell, R. M. Desai, C. M. Madl, M. Xu, X. H. Zhao, 2 O. Chaudhuri, C. Verbeke, W. S. Kim, K. Alim, A. Mammoto, 3 D. E. Ingber, G. N. Duda, D. J. Mooney, Nat. Mater. 2015, 14, 1269. 4
- [12] A. Barbetta, G. Rizzitelli, R. Bedini, R. Pecci, M. Dentini, Soft Matter 5 2010, 6, 1785.
- 6 [13] C. M. Brougham, T. J. Levingstone, N. A. Shen, G. M. Cooney, 7 S. Jockenhoevel, T. C. Flanagan, F. J. O'Brien, Adv. Healthcare Mater. 8 2017, 6, 1700598.
- 9 [14] a) G. L. Ying, N. Jiang, S. Mahar, Y. X. Yin, R. R. Chai, X. Cao, J. Z. Yang, A. K. Miri, S. Hassan, Y. S. Zhang, Adv. Mater. 2018, 30, 10 e1805460; b) L. B. Che, Z. Y. Lei, P. Y. Wu, D. W. Song, Adv. Funct. 11 Mater. 2019, 9, 1904450. 12
- [15] a) D. R. Griffin, W. M. Weaver, P. O. Scumpia, D. Di Carlo, T. Segura, 13 Nat. Mater. 2015, 14, 737; b) J. Koh, D. R. Griffin, M. M. Archang, 14 A. C. Feng, T. Horn, M. Margolis, D. Zalazar, T. Segura, 15 P. O. Scumpia, D. Di Carlo, Small 2019, 15, e1903147. 16
- [16] L. R. Nih, E. Sideris, S. T. Carmichael, T. Segura, Adv. Mater. 2017, 17 29, 1606471. 18
- [17] G. W. Dorn, Nat. Rev. Cardiol. 2009, 6, 283.
- 19 [18] A. M. van der Laan, J. J. Piek, N. van Royen, Nat. Rev. Cardiol. 2009, 20 6 515
- [19] X. Zhao, J. Y. Y. Kwan, K. Yip, P. P. Liu, F. F. Liu, Nat. Rev. Drug Dis-21 covery 2019, https://doi.org/10.1038/s41573-019-0040-5. 22
- [20] M. Back, G. K. Hansson, Nat. Rev. Cardiol. 2015, 12, 199.
- [21] A. Burashnikov, C. Antzelevitch, Nat. Rev. Cardiol. 2010, 7, 139.
- [22] A. D. Michelson, Nat. Rev. Drug Discovery 2010, 9, 154.
- 25 [23] S. Pierre, T. Eschenhagen, G. Geisslinger, K. Scholich, Nat. Rev. 26 Drug Discovery 2009, 8, 321.
- 27 [24] a) N. C. Lai, T. Tang, M. H. Gao, M. Saito, T. Takahashi, D. M. Roth, 28 H. K. Hammond, J. Am. Coll. Cardiol. 2008, 51, 1490; b) T. Takahashi, 29 T. Tang, N. C. Lai, D. M. Roth, B. Rebolledo, M. Saito, W. Y. W. Lew, P. Clopton, H. K. Hammond, Circulation 2006, 114, 388. 30
- [25] R. J. Akhurst, A. Hata, Nat. Rev. Drug Discovery 2012, 11, 790.
- [26] M. Dobaczewski, W. Chen, N. G. Frangogiannis, J. Mol. Cell Cardiol. 32 2011, 51, 600. 33
- [27] a) S. Namkoong, C. K. Kim, Y. L. Cho, J. H. Kim, H. Lee, K. S. Ha, 34 J. Choe, P. H. Kim, M. H. Won, Y. G. Kwon, E. B. Shim, Y. M. Kim, Cell. 35 Signal. 2009, 21, 906; b) S. M. Tan, Y. Zhang, K. A. Connelly, R. E. Gilbert, 36 D. J. Kelly, Am. J. Physiol.: Heart Circ. Physiol. 2010, 298, H1415.
- 37 [28] C. L. Hastings, E. T. Roche, E. Ruiz-Hernandez, K. Schenke-Layland, 38 C. J. Walsh, G. P. Duffy, Adv. Drug Delivery Rev. 2015, 84, 85. 39
- [29] A. Bertero, C. E. Murry, Nat. Rev. Cardiol. 2018, 15, 579.
- 40 [30] E. Swider, O. Koshkina, J. Tel, L. J. Cruz, I. J. M. de Vries, M. Srinivas, Acta Biomater. 2018, 73, 38. 41
- [31] S. Mitragotri, P. A. Burke, R. Langer, Nat. Rev. Drug Discovery 2014, 42 13.655. 43
- [32] B. H. Hu, P. B. Messersmith, J. Am. Chem. Soc. 2003, 125, 14298. 44
- [33] a) S. M. Dallabrida, L. A. Falls, D. H. Farrell, Blood 2000, 45 95, 2586; b) D. Gemmati, M. Vigliano, F. Burini, R. Mari, 46 H. H. Abd El Mohsein, F. Parmeggiani, M. L. Serino, Curr. Pharm. 47 Design. 2016, 22, 1449.
- 48 [34] a) Y. Matsumura, Y. Zhu, H. Jiang, A. D'Amore, S. K. Luketich, 49 V. Charwat, T. Yoshizumi, H. Sato, B. Yang, T. Uchibori, K. E. Healy, 50 W. R. Wagner, Biomaterials 2019, 217, 119289; b) J. L. Ifkovits, E. Tous, M. Minakawa, M. Morita, J. D. Robb, K. J. Koomalsingh, 51 J. H. Gorman, R. C. Gorman, J. A. Burdick, Proc. Natl. Acad. Sci. 52 USA 2010, 107, 11507. 53
- [35] a) R. Bao, B. Tan, S. Liang, N. Zhang, W. Wang, W. Liu, Biomate-54 rials 2017, 122, 63; b) M. J. Hernandez, K. L. Christman, JACC Basic 55 Transl. Sci. 2017, 2, 212. 56
- [36] M. P. Lutolf, J. A. Hubbell, Nat. Biotechnol. 2005, 23, 47. 57
- [37] M. L. Lindsey, Nat. Rev. Cardiol. 2018, 15, 471.
- 58 [38] J. S. Swaney, D. M. Roth, E. R. Olson, J. E. Naugle, J. G. Meszaros, 59 P. A. Insel, Proc. Natl. Acad. Sci. USA 2005, 102, 437.

Q6

Q5

23

24

ADVANCED SCIENCE NEWS

www.advancedsciencenews.com

www.afm-journal.de

$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\\23\end{array} $	 [39] S. Behzadi, V. Serpooshan, W. Tao, M. A. Hamaly, M. Y. Alkawareek, E. C. Dreaden, D. Brown, A. M. Alkilany, O. C. Farokhzad, M. Mahmoudi, <i>Chem. Soc. Rev.</i> 2017, <i>46</i>, 4218. [40] a) T. Yoshizumi, Y. Zhu, H. Jiang, A. D'Amore, H. Sakaguchi, J. Tchao, K. Tobita, W. R. Wagner, <i>Biomaterials</i> 2016, <i>83</i>, 182; b) L. V. Le, P. Mohindra, Q. Fang, R. E. Sievers, M. A. Mkrtschjan, C. Solis, C. W. Safranek, B. Russell, R. J. Lee, T. A. Desai, <i>Biomaterials</i> 2017, <i>129</i>, 37. [41] B. Pena, M. Laughter, S. Jett, T. J. Rowland, M. R. G. Taylor, L. Mestroni, D. Park, <i>Macromol. Biosci.</i> 2018, <i>18</i>, e1800079. [42] A. C. Daly, L. Riley, T. Segura, J. A. Burdick, <i>Nat. Rev. Mater.</i> 2020, <i>5</i>, 20. 	 [43] J. E. Mealy, J. J. Chung, H. H. Jeong, D. Issadore, D. Lee, P. Atluri, J. A. Burdick, Adv. Mater. 2018, 30, e1705912. [44] M. H. Hettiaratchi, T. Miller, J. S. Temenoff, R. E. Guldberg, T. C. McDevitt, Biomaterials 2014, 35, 7228. [45] H. K. Makadia, S. J. Siegel, Polymers 2011, 3, 1377. [46] F. Danhier, E. Ansorena, J. M. Silva, R. Coco, A. Le Breton, V. Preat, J. Controlled Release 2012, 161, 505. [47] E. Ehler, T. Moore-Morris, S. Lange, J. Vis. Exp. 2013, 6, e50154. [48] S. S. Mihardja, J. A. Gonzales, D. W. Gao, R. E. Sievers, Q. Z. Fang, C. A. Stillson, J. S. Yu, M. Peng, R. J. Lee, Biomaterials 2013, 34, 8869. 	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24			24
25 26			25 26
27			27
28 29			28 29
30			30
31			31
32			32
34			34
35			35
36 37			36 37
38			38
39			39
40 41			40 41
42	k L		42
43			43
44 45			44 45
46			46
47			47
48			48
49 50			49 50
51			51
52			52
53 54			53 54
55			55
56	, 7		56
57			57
58 59			58 59
57			,,

Editorial Office: Wiley-VCH Verlag Boschstraße 12, 69469 Weinheim Germany Tel.: (+49) 6201 606 531 Fax: (+49) 6201 606 510

Email: afm@wiley-vch.de

Reprint Order Form

Charges for Reprints in Euro (excl. VAT), prices are subject to change. Minimum order 50 copies; single issues for authors at a reduced price.

No. of pages	50	100	150	200	300	500	
	copies	copies	copies	copies	copies	copies	
1-4	345,—	395,—	425,—	445,—	548,—	752,—	
5-8	490,—	573,—	608,—	636,—	784,—	1077,—	
9–12	640,—	739,—	786,—	824,—	1016,—	1396,—	
13–16	780,—	900,—	958,—	1004,—	1237,—	1701,—	
17–20	930,—	1070,—	1138,—	1196,—	1489,—	2022,—	
every additional	147,—	169,—	175,—	188,—	231,—	315,—	

Please send me send bill me for

no. of reprints

no. of issue (1 copy: 28 Euro)

high-resolution PDF file (330 Euro excl. VAT) E-mail address:

Special Offer:

If you order 200 or more reprints you will get a PDF file for half price.

Please note: It is not permitted to present the PDF file on the internet or on company homepages.

Cover Posters (prices excl. VAT)

Posters of published covers are available in two sizes:

DIN A2 42 x 60 cm / 17 x 24in (one copy: 39 Eu	ro
--	----

DIN A1 60 x 84 cm / 24 x 33in (one copy: 49 Euro)

Postage for shipping (prices excl. VAT) overseas +25 Euro within Europe +15 Euro

Date, Signature

Wiley-VCH Verlag GmbH & Co. KGaA – A company of John Wiley & Sons, Inc. -Location of the Company: Weinheim - Trade Register: Mannheim, HRB 432833. Chairman of the Supervisory Board: John Kritzmacher General Partner: John Wiley & Sons GmbH, Location: Weinheim – Trade Register Mannheim, HRB 432296 – Managing Director: Sabine Haag and Dr. Guido Herrmann

Manuscript No.:	
Customer No.: (if available) _	
Purchase Order No.:	
Author:	

Information regarding VAT: The charges for publication of *cover pictures* /*reprints/issues/poster/Video abstracts/* are considered to be "supply of services" and therefore subject to German VAT. However, if you are an institutional customer outside Germany, the tax can be waived if you provide us with the valid VAT number of your company. Non-EU customers may have a VAT number starting with "EU" instead of their country code, if they are registered with the EU tax authorities. If you do not have a valid EU VAT number and you are a taxable person doing business in a non-EU country, please provide a certification from your local tax authorities confirming that you are a taxable person and are conducting an economic activity in your country. Note: certifications confirming that you are a tax-exempt legal body (non-profit organization, public body, school, political party, etc.) in your country do not exempt you from paying German VAT.

VAT number: ___

Send bill to:

Mail reprints / copies of the issue to:

I will pay by bank transfer

I will pay by credit card

VISA, Mastercard and AMERICAN EXPRESS

For your security please use this link (Credit Card Token Generator) to create a secure code Credit Card Token and include this number in the form instead of the credit card data. Click here: <u>https://www.wiley-vch.de/editorial_production/index.php</u>

CREDIT CARD TOKEN NUMBER

- [
							11						i I
							v						1 1
- L													

